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‘ BOTTOM REFLECTION OF UNDERWATER
EXPLOSION SHOCK WAVES, COMPUTER PROGRAM

by

James R, Britt
Hans G. Snay

ABSTRACT: This report describes a FORTRAN IV computer code, BOTREF,
which calculates the bottom reflection pressure history of under-
water explosion shock waves, The reflection is computed for incident
exponential pulses and plane, homogeneous, elastic bottoms using a
linear spherical wave theory. Corrections for the non-linear
variations of the peak pressure and time constant with distance

are included., The program generates a plot tape for use on CALCOMP
incremental plotters. Provisions are made for incorporation of the
machine program that calculates the peak translational wvelocity

of a ship target described in NOLTR 71-65. For comparison, an
option is included for calculating the bottom reflection using the
plane wave theory instead of that for spherical waves,

Explosions Research Department
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland
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BOTTOM REFLECTION OF UNDERWATER EXPLOSION SHOCK WAVES, COMPUTER
PROGRAM

Tris report is part of a continuing study of the interaction of
the underwater explcsion shock wave with the ocean bottom. The
computer program described in this paper calculates the bottom
reflection and generates plots of the pressure history. Tr2 cal-
culations of this program are being used in the bottom reflection
study to assess the potential danger to ships delivering nuclear
underwater weapons posed by various bottom materials,

Thanks are due Dr., A. H. Van Tuyl (NOL, Code 331) for his help
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This study was =upported by the Defense Nuclear Agency through
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and Reflection Effects).
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BOTTOM REFLECTION OF UNDERWATER
EXPLOSION SHOCK WAVES, COMPUTER PROGRAM
l. INTRODUCTION

i The bottom reflection of the underwater explosion shock wave
is of interest to the Navy because of the danger it presents for
self-damage to ships delivering nuclear ASW weapons. The thecry
presently being used to describe the reflection is a linear spherical
wave theory originally developed by L. Cagniard (1) for the calculation
of the reflection at an interface hetween two elastic solids, On
the basis of Cagniard‘s theory, Rosenbaum (2) derived equations
which describe the bottom reflection of underwater explosion shock
waves, PBritt (3) has greatly extended and generalized Rosenbaum's
work. Britt's report should be consulted when using the computer
program described here,

This report describes a computer program, BOTREF, written in
FORTRAN IV for the NOL CDC 6400 computer. The code ca. _ualates the
pressure history of the bottom reflection of incident exponential
pulses reflected from plane, homogeneous, elastic bottoms using
the spherical wave theory. Major portions of this program were

- written by the second author. The first author later brought this
program into its present versatile form and used it successfully

in practical applications,
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The program has options for calculating the spherical wave
reflection in two ways: (1) using real arithmetic and equations
derived using contour integration (referred to as the Cagniard-
Rosenbaum method) and (2) using the "complex arithmetic method”.

The first method is generally faster, but both usually take less

than 30 seconds of central processor time on the CDC 6400 for
calculating a complete pressure history. Also included in the program
is an option for calculating the bottom reflection using the

plane wave theory of Arons and Yennie (4). For both the plane wave
and the spherical wave, the calculations include corrections for the
non-linear changes of the shock wave peak pressure and time constant
with the distance from the charge.

The code generates a CALCOMP plot tape of the total pressure
history including the incident, bottom reflected, and acoustic
surface reflected waves, The print out, in addition to the pressure
history, includes information such as the incident angle, the plane
wave reflection coefficient and phase shift, critical angles, arrival
times, impulses, and energy flux, |

The output of the bottom reflection program can be directly
transferred to the PTV Program (NOLTR 71-65) which is then used
as a subroutine, This program calculates the peak translational
velocity (PTV) of a cylindrical target. This velocity can be used
as an index for damage,

The equations used in the BOTREF code are described in Section 2
and references are made as to the location in the program where
each egquation is used., In Section 3 a detailed description is given

of the program organization, inputs, outputs, and other important

2
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symbols. The appendices contain a complete FORTRAN listing of the
program, sample output, and a CALCOMP plot,

The code contains many comment cards so that most of the inputs
and outputs and much of the organization is explained in the program
listing,

Comments on Terminology. In the acoustic literature reflectors

' are called either solids or fluids, depending on whether they have

a shear-strength or not. We prefer the terms non-rigid or rigid,

because some solids, for instance, sand, have such a low shear

strength that the theory for a non-rigid bottom yields sufficiently

accurate results, in spite of the fact that the material is a solid,

We hope that our terminology will lead to less misunderstandings

than the conventional cne or the previously used term “"liquid bottom",
Rigidity should be understood as the resistance of a body to

a change in shape at constant volume, It is equivalent to shear

strength and is measured either by the Poisson Ratio or, as in this

paper, by the propagation velocity of the shear wave, The shear

velocity is zero for a non-rigid material, Compressibility is the

resistance to a change in volume at constant shape and can be
represented by the propagation velocity of a compression wave, i.e,,
the sound velocity.
The word rigid often has the connotation of a material having
o infinite rigidity. We use it in the sense of a material having a

finite, non~vanishing rigidity.
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2., THEORY USED TO CALCULATE THE BOTTOM REFLECTION

2.1 Theory of the Bottom Reflection of a Spherical Wave

The theory used in the computer program described in this report
has been derived by Roscnbaum (2). Britt (3) has reviewed, explained,
and greatly extended Rosenbaum's work. A semi-linear theory is
used which describes all phenomena of interest with adequate accuracy.
The notation used in this section is essentially that of Britt's
report., The following exceptions are to be noted. We denote the
excess pressure by p instead of P, Britt and Rosenbaum denote the
time by 7; we use t for the time and = for Rosenbaum's reduced
time (compare with Equation(2.2,2)). The program calculates the
step wave response nfp = 1P which corresponds to one reflection
from the bottom, Multiple reflections between the surface and the
bottom are not included. (Multiple reflections are of minor impor-
tance to underwater explosion phenomena that lead to damage processes,
wWhen a strong pressure wave is reflected at the water surface, most
of the wave energy is left near the surface and does not propagate
down into the water because of cavitation and spray formation.)

We denote : P; by P, the bottom reflection slant range 1Ry
by R, the incident or direct wave range by Rso and the surface
reflection range by Rs' We also drop the subscripts n and m except
in Tm and Km (Equation 2.2.18),

The geometry of the bottom reflection is shown in Figure 1,

The water depth is H, The depths of the charge and gauge are d
and dg. The hcorizontal distance between charge and gauge is r.

The incident angle of the bottom reflection is 8. From this figure
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we see that the slant ranges are given by the equations

1/4
Ri = [(d - dq)a + rz] (slant range of incident wave) (2,1.1)
" .3 P 1/2
Rr = dr +r ] (slant range of wave reflected at bottom) (2.1.2)
and
=T a 2 11/3 (slant range of the wave re-
Rs - L(dg +d)” +r ] flected at the water surface), (2.1.3)

where dr =2H - dg d is the depth of the "image" below the gauge,

Further, we have

cos 8

a./R. (2.1.4)

and sin @ r/R_. (2.1.5)

In the water the sound velocity is denoted by <1, and the density
by s . Similarly, the sound velocity in the bottom material is
ca, the shear wave propagation velocity is c,, and the density is
Pa. (Britt denoted the sound velocity and density of a rigid bottom
by ca and p3.)

2,i.1 Critical Angles. For an incident angle 8, which is also
the reflected angle, the refracted or transmitted ray into the

bottom makes an angle 9; (see Figure 1) given by Snell's law

sin 6 = :—_f:- sin Ag. (2.1.6)

The angle 6; is that angle at which the pressure wave enters the
bottom. Similarly, the angle 6, of the shear wave in the bottom is

defined
sin A = a— sin 84 - (2,1,7)
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When c3 > 1 or ¢ > o the angles A; and 6, become 90° at

incident angles ecr and ec g defined by

r
sin ch = ¢ /ca (2.1.8)
sin qcrs= c1/c. (2.1,9)

ecr is called the critical angle of the compression wave, and ecrs

is called the critical angle of the shear wave. Thege angles are

important for calculating and interpreting the bottom reflection

pressure history.

2.1.2 The Incident Pulse, The computer program assumes an

exponential incident pulge pi(t) given by

p;(t) = Pp(R;j exp [-(t - Ri/c:)/G] for t 2 R,/
Pi(t) = 0 for t < Ri/ci, (2.1.10)

where G is the time constant (usually denoted by 2) and Pp = pF(Ri)
is the peak pressure of the incident shock wave, A reduced notation
is used in the machine program utilizing the incident slant range
Ri (Equation 2,1,1) as the characteristic length. The reduced time is
t = tca /R;. (It is denoted by T in the program). The reduced arrival
time of the front of the direct wave is thus £ = 1, The incident pulse
is then given by

P;(€) = B(R,) exp [-(E -1/ ] for €2 1

pi(E) =0 for t < 1, (2.1.11)
where G = ©1G/R; is the reduces time constant,

7
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For the time constant G and the peak pressure Pp the relations
for the actual underwater explosion srhock waves (high amplitude
waves) are used which when used together with the wave equation
comprise the "semi-linear®™ theory. The shock wave parameters are

obtained from the similitude equations
/3 (1/3 g
G = Cy W/ (W3/R,) (2.1.12)

n
pp = C, 02 /my) P, (2.1,13)

where Co? cp, ne and n, are constants for a given explosive. W is

the charge weight in pounds, or, with appropriate constants, the
yield in kilotons. G and pp are calculated in the main prcgram in

Cards BOTR160-167,

Examples of the constants are

Explosive cp np cG n.
TNT 21600 1.13 0.052 ~0,23
HBX-1 23800 1.15 0.049 -0,29
Nuclear 4,291-10° 1.13 2,242 -0.22

W = ::?1a 4.380-10° 1.13 2.274 -0.22

The values for nuclear explosions of the upper row are the most
recent ones., Those in the lower row are generally quoted in the liter-
ature. The constants cp and Cg are given in psi and milliseconds,

1 2.1.3 The Surface Reflection. The surface reflection p(t)

f calculated from the simple acoustic equation is
% ps(t) = -pF(Rs) exp [-(t - Rs/cl)/Gs] for t 2 Rs/cl
pg(t) =0 for t < Rs/c;,

(2.1.14)

where Gg = G(Rs). In reduced notation this becomes

8
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ps('f?) = ~Pp(R,) exp [—('E - 'is)/Es] for € 2 R

_ i2.1.15)
Ps(€)=0 for £t <R,

where E; = CQ1G /R, and ﬁ; = Ry/R;. These equations are coded in
Cards BOTR218, 704, and 882,

The surface reflection is a tension wave and its pressure is
to be subtracted from the pressure of the incident and the bottom
reflectad wave,

Equations (2,1.14 and 15) ignore cavitation which in sea water
does not let pressures drop substantially below the vapor pPressure,
In the machine program this is taken into account by a. test that

makes sure that the total pressure does not fall below zero absolute
(Cards BOTR713 and 884) .,

reflection breaks down and must be replaced by the anomalous surface
reflection described in NOLTR 70-31 , fThe machine program described
here does not include this mode of the surface reflection, This
problem will be treated in another machine program that describes
the shock wave propagation in shallow water,

2,1.4 The convolution Inteqral. The theory of the bottom
reflection yields the reflected wave for an incident step wave,
This step wave response, denoted by Pr(t), is the crucial roint of
the analysis and will be discussed in detajl later. It has the
dimension of (Length)™!, The pressure history of the bottom reflected
wave for an exponential incident wave pf(t) is obtained from the

convolution integral:
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t
pr(t) = pk!‘(Rr) [Pr(t) - 1/Gr f exp[ -(t -z)/GJ Pr(z)d'z]
6
for t 2 &
(2.1.16)
pe(t) =0 for t < 6.

This equation is explained in Appendix D of Britt's report. The

scale factor p% and the time constant G, are given by
pé = RrpF(Rr) (2.1.17)

G, = G(RrL (2.1.18)
where R, is the slant range of the reflected wave, Equation(2.1.2).
The factor Rr of the reduced pressure scale factor p§ stems from the
definition of the reduced step wave response Pr(t) which includes
ﬁ: as a factor.

The reduced form of the convolution integral is readily obtained
by introduction of t = tc;/Ri, ¥, £, and E; = c16_/R, .

The symbol & in Equation (2.1,16) denotes the arrival time of
the bottom reflection.

For subcritical incidence, 8 < 8 __, we have

cr
and the reduced form is

§ = 015/Ri = Rr/Ri . (2.1.20) i
In this case 6 is the arrival timetc of the peak of the reflected .

wave,

; For supercritical incidence, 6 > 8 _ . the precursor of the

r
bottom reflection arrives before t = to namely at

10
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b =x/cs +d_(a™* - o) 1/? (2.1.21)

or in the dimensionless form

i 1/a
6 = rcl/baRi + dr[l - (1 /c2) ] /Ri. (2.1.22)

The convolution integral is calculated in the BOTREF program
Cards BOTR556, 589, 597, 635, 643, and 673 nsing Simpson's rule for
small intervals with three equally spaced points.

For an exponential incident pulse the integral need not be
recalculated from t = & for each time step because of

exp(t + At) = exp(t)exp(At).

The algorithm used to calctUlate the integral in Equation (2,1.16),

which we call FI,is as follows:

Fr(t) = exp(-20t/G)F (¢ = 28¢) +{[ 2 (¢ - 26t exp(-rt/c,)
+ 4R (t - 88) | exp(=rt/G)) + B (8)} at/3 . (2.1.23)

This relation permits a convenient step-by-step quadrature of the
integral using its value for a time 2At earlier. The expression
is readily transformed into a reduced form by the introduction of

t, At, and ar. F. has the dimension time/length.

I
For supercritical incidence Pr(t) has a logarithmic singularity

at t = t. . Since Pr(t) is a rapidly changing function of t near

t., a smaller time increment, At® ~ 4t/8, is used in the code for

the interval (tc-aAt, t +4st) . The code calculates ¢ so that there

are enough points in the bottom reflection pressure-time history

(before and after the time increment change) to execute the impulse

11
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and energy flux integrations. The usual range is 2.1 < o < 6.1,
Because these integrations are performed with Simpson's rule on
equally spaced points, each integration step is completed on an

odd-numbered point.

Further, in the time range tc - 20t' < t < tc + 2At' we

change the integration variable in the convolution integral F; to
= t2 - 22
v ts -2 for z < t
2 o o3 _ 4B
u z tc for z 2 tc.
The step wave response P l:(1;) behaves near the singularity like

lim
t-'tc Pr(t) = C In{( | tc - t] )e

The change of variables v and u transforms the last two factors of

Equation (2.1.16) as follows:

v
Pr(z) dz = - > Pr(z) dv z < tc
u
- = Pr(z) du zzt,.
Then we obtain
2 1/s
lim v lim (& - zl_
zot -z Blz) =-cC 29t — 2 Iln(t-z) =0 z st
(2? - t3 1/
i.%‘gc p(z) = clim ~ 2 In(z-t) = 0 z >t
c

This means the integrands vanish at the singularity of P., and

thus makes numerical integration possible.

12
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Equation (2.1.24) below illustrates the variable change,

‘
tc—ZAt

p.(t) = prf.[Pr(t) - (%i _G[exp[-(t = z)/Gr] P (2) ¢z
v(tc)
- f exp[-(t - z-)/Gr] Pr(Z) ;—’- dv
v (t-24t)
u(tc+2At’)

+ .[ exp(--(t-z)/Gr ]Pr(z)-‘-z‘- du
u(tc) ’

t

+ J/. exp[—(t -z)/cr] P.(2) az }]. (2.1.24)
4
tc+2At
Up to time tc- 24t' and after time tc+ 24t' the integration
variable is z and the algorithm of Equation (2,1.23) is used to

perform the quadrature. Around the singularity Simpson's rule on

equally spaced intervals of v and u, instead of z or time, is used

for the integration,

Using the algorithms described below, FI(t) and pr(t) are

evaluated in two steps before and after the singularity,

When
t-20t' <t = tc, the follwwing variables are used:
t o=t - zat (2.1.25)
i =v(ty) = (tg-ti)‘/’ (2.1.26)
ts = [t2 - (3,/0)2] 1/ (2.1.27)
1/2
ts = [ - (w/2)?) (2.1.28)

13
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te = [€2 - (1/8)7] 1/s (2.1.29)

The fifth time used here is t.. However, Pr(tc) does not appear
in the equations for FI because the transformed integrand vanishes,

The value of FI at t = t3 is obtained from

FI(ta) = FI(t;)exp [-(ta-t;)/cr] 4 {Pr(t;)exp[-(t3~t;)/cr]vx/tx

+ 3P (tz)exp(-(ts-ta) /G 1 /ts + Pr(ta)vi/Zta} vi/12 .
(2.1.39)
This equation is coded in reduced notation in Card BOTR589. For

the next step FI(tc) is calculated using

Fplty) = Frlts)expl-(t ~ts) /6, ]+ P (ts)exp(-(t, ~ts)/G_ly/2ts
+ P (t) exp [-(t~t)/G,) w/te} w/12 o (2.1.3D)

This equation is coied in reduced notation (Card BOTR597) .

Similarly, after the singularity we define the following

variables:

te =t + 2t (2.1.32)
w o= ults) = (88 - €2)1/? (2.1.33)
ta = [t3 + (u1/4)%) 1/a (2.1,34)
ts = [t3 + (uy /2)12 /3 (2.1.35)
te = [t + (34/8)2 2/ (2.1.36)

Here t; is the time of the singularity to but Pr(tc) is not needed

14
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since the transformed integrand vanishes., The value of PI(t.)

is then given by
Pylts) = Pp(tdexpl-(ta-t ) /G, 1+ {P (te)v1axp E-(ta-ts) /G,] /ts
+ P (ts)u /2t w712 . (2.1.37)

This equation is converted to reduced notation and coded in Card
BOTR635., Then the last step using the special integration variables
is

Py(ts) = Pp(ts)expl-(ts~ts) /6] + {p (ts)mexp [Hts-ta) /G, ) /2ts

+ 3P (te)m expl ~(te ~ts) /G, 1 /ts + P_(ts)w /ta}us /12 .
(2.1.38)

This equation in reduced form is coded in Card BOTR643.

2,1.5 The Impulse and Enerqy Flux, The impulse I and energy
flux EF are calculated in the main program Cards BOTR717-766.

These calculations are made only if the spherical wave bcecttom
reflection is used. The impulse in psi-sec is evaluated from the

equation
t

I -/ p(t) dat,

. tO

where p(t) = pi(t) + pi(t) + p'(t) is the total pressure of the
incident, bottom reflected,and surface reflected waves and ts is

the time of the beginning of the pressure pulse p(t).

15
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The energy flux BP in in-psi is found from the equation
t

Ep = { _{'p' pdt} /(2.3066 p:c1)
o

where 2,3066 is a conversion factor necessary for BF to be in units 3

in-psi when p is in psi, time in seconds, ¢, in gm/cn®, and ¢ in -

ft/sec. '
Away from the singularity of pE(t) of t = t. and for sub-

critical bottom reflections the integrals are deteririned using
Simpson's rule on aqually spaced points as a function of time,

Near the singularity the change of integration variables is made
h to v and u as for the convolution integral., This change of
variables is made in Cards BOTR738-755,

Also calculated in the same section of the program is the
*positive impulse” which is simply the impulse of the positive
part of the total pressure p(t). If the full output option is used
(see the input 25 in Section 3.1 and the sample outputs of Appendix

B), the magnitudes reduced impulse I/MF/S. reduced positive impulse,
4 and reducsd energy flux EF/W‘/5 are calculated in Cards BOTR793-797.

2,2 The Cagniard-Rosenbaum Method for Calculating the Step Wave

Response

In this section the Cagniard-Rosenbaum equations are listed,
and forms of these equations similar to the FORTRAN notation are
given, This method is faster than the complex arithmetic method .
which will be discussed in Section 2.3, but it has the disadvantage
that separate equations are required for the precursor and the
main wave and for each type of bottom (determined by the ordering
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However, in the coding we were able to take

advantage of certain common factors and terms and hence reduce the

number of statements that would otherwise be required,

2,2,1 Non-Rigid Bottom Precursors, A fast non-rigid bottom

(cz > @1) for whick 6 > ec

£ has a step wave response at times

6gt< tc expressed by the foliowing equation (Britt (2-1,10)):

p(t)=l-)-(c_'§).f
r Rr

wl(o+w

1272 (1-8in my/2) av

1

1

where o = (o + M)/2 + [(a - M)/Z] sin wy/2,

b = py /p,, Tm . t/er g = (ci‘l-a

2)1/3

[(1-b%) W +0°1%) (wm) */®

(2.2.1)

(2,2,2)

- 21/3
e M = Tmcos 8+ (qq = Tm) sin o,

- - (o3 _ L3y1/3_, _
N = TmCO8 © (cy Tm) gin A, gin 8 = r/Rr, and cos A = dr/Rr.

In the program the integration variable x = my/2 is used.

sét w = c;w, Then after rearranging,

into the form which is coded
2 \/5 b R, n/2 Fx w dx
Ripr(t) = ™R . / a 2 a
r /2 w2 4b? (¢1 202 w?)

where

Fx = (1 - 8in x){[(c;a+w)(c;a-c:M)]/[é+sin X
+ 4(1-cf72) 3510 0 /(c; 0mcy mip/e,

’

We also

Equation (2.2.1) can be put

(2.2.3)

(2.2.4)

= (1 - sin x){[(cos @ +w) P(1))/ [1+ sin x+P(2)]}‘/5.
with cos 0 = 0 = [1 - (C:/ba)']’/h:

2(1)

P{2) = 4(1 - %1 )12 g41n o/p(1),

The variables cos «,

STPAO022, and 23,

= CO8 O = CIM/

P(l), and P(2) are calculated in Cards BOTR238,
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The integrand above is evaluated in FUNCTION ONE. The variable

Fx is coded in Card ONE023, and the value of the integrand is ONE
in Card ONEO55, The factor outside the integral is calculated in
Card STPAO25., The integration for this and all other precursors

is controlled by SUBROUTINE STPWA which uses the Gaussian quadrature
of FUNCTION FGI to evaluate the integral, The value of RiPr(tL
called STPW in Card STPA027, is returned to the main program BOTREF

where the convolution integral is executed.

2.2,2 Rigid Bottom Precursor, Case ¢z > ¢ > ¢ . The precursor

integrands for a rigid bottom are also evaluated in FUNCTION ONE,
For the case c; > ¢ > o (slow shear) the following equation

(Britt (4-1.6)) is used

1
b (t) = Ble=M) &+g)1faa(l-sin M/2) A L (5.2
r 4R _c,* (e-N)2/2 [a% + (B + ©)2]
-1
where
A=wc?/2 -1 + wa)a y (2.2,.6)
1/a
B = wler?=u®) (0°=0*) 2| w+er®-ci? | (2.2.7)
C = bq-‘ (68_w3)1/3/~4' (20208)

In a manner similar to the non-rigid bottom, Equation (2.2,5)

can be rearranged to obtain the program form

© 2\/z'bni "/zrxAxdx 2.2.9)
R.P_(t) = —————= 2.2.9
i'r "Rr ’/”[;;+l x+cx$§] z

-n/2

where w = cjw, cos @ = ¢3o, and

18
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A = 4c1c*A = wll-2(ce /)" (1-w*) 1% (2.2.10)

« = 401G ‘B = 4w(ce /1) (1-w*) [ (cos®a
- ) lea/cr)® (W=1) 41(12/2  (2.2.11)
Cy = 4c;c4*C = b(cos?a - w')‘/'. (2.2.12)

As in the previous case Fx and the factor outside the integqral are

calculated in Carcdis ONE023, and STPAO25. The variables Ax, Bx,

and cx are coded in Cards ONE043, 044, and 050. The value of the

e T

integrand is ONE in Card ONEO51, and as before SUBROUTINE STPWA

controls the integration.

2,2,3 Rigid iottom Precursor,Case c; > ¢4 > ¢3 . The precursor
for c3 > ¢4 > ¢ (fast shear) is based on the following equation
(Britt (4-2.8))

1
p_(t) = blo=M (o+w) '’ ®A(L-sin my/2) dy
¥ 4R_ce* (w2 [ 2% + (B + 0]
1}
. (2.,2,13)
, blo=M (040)}”® (A-B) (1-sin my/2) dv
4R oot (-2 [(a - B)® +c*]
h 2 (c1-cq ) /3o - M
where  §1 =—arcs:|.n[ S = M ] .

(In Britt's paper the magnitude B in the second integral is denoted
by Ba, a precaution unnecessary if the definition Equation (2,2,7)

- is used,) Equation (2,2.13) can then be written in the form used

in the program
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n/2
24/2 b Ri
RiPr(t) = Fx F.

X dx, (2.2.14)

"Ry -1/2

vhere

Fo = (A, -B)/ [(A =-B)? +c?] for o +ci®~c1” < 0 (2.2,15)

X

F = A/ [AL + (B, +C)?] for w'+cr =ci” 2 0.(2.2.16)

The variables Ax' Bx' and cx are defined in Equations (2.2.10),
(2.2.11), and (2.2.12). In the first case the integrand is coded
in card ONEO47 and the second case in Card ONEOS51.

2,2,4 Step Wave Response at t = t.. At the peak of the bottom

reflection at t = t_ = R./c1,the step wave response P.(t,) is
calculated in the main program BOTREF, For supercritical incidence,

?>8 P, = t» where the sign depends on the phase shift ¢

explained in Section 2,5.1. The treatment of this case is discussed

in 8ection 2.1.4. For subcritical incidence, 6 < Ocgs Pp Temains finite
and P, = K/hr where K is the plane wave reflection coefficient of
Section 2.5.1.

2.,2,5 Non-Rigid Bottom Main Wave, Case cg > ¢3. A fast non-

rigid bottom (c3 > c1) has a step wave response at times t > t.

given by the equation (Britt (z-2,.10))

1 1-b
Pr(t) R, 1l+b
(<]
e w(o® - 2 2 '1/"_ . Y1/z
+ Y / [( l-bz) w® +0’3b2]{ [(w—Km) +L] [(w'l'Km) +L] ’dw,

(2.2.17)
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where

b
]

Tmcos ] (2.2.18)

o 2 -3 . 3
L = (Tm - c )sin®9. (2.2.19)
The subscript m has been kept to distinguish it from the reflection
coefficient K,

In the code the integration variable ig w = ciw, and the form

of the equation is similar to that for the precursor:

Q10
(1-b)R,  2bR, / Fy w dw
PR § 4
TrRr
0

RiPr(€) = TR, w2 (cSo® - w) (2.2.20)

where Fx is now

F_= [—alo’ - w 4% [ ofo” = w ,1/3 (2.2.21)
= ch+(w—c1Km)3 cfL + (w+c1Km)

=T cos®a - W ]‘/' - cos®a - w* 1/
Lp(8) +(w-P(7))*® (8) +(w+P(7))*

with cos @ = c30 = [1 - (c;/c.)']‘/'.
The abbreviatias P(7) and P(8) are listed in Cards STPB026 and 27.
The function F, above is calculated in Card ONE032, and the integrand
is ONE in Card ONEO55. The factor outside the integral is evaluated
in Card STPB032. The first term on the right hand side of Equation
(2.2.20) is computed in Card STPB038. The integration for this and
all other main wave responses is controlled by SUBROUTINE STPWB,

The value of RiPr(t) is calculated in Card STPBO47.
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2.2.6 Non-Rigid Bottom Main Wave, Case ¢ > c3. The step wave

response for a slow non-rigid bottom, one with c¢; > c;, is expressed in

the equation (Britt (2-3.14))

5 |
1b_ 2y2 b [ _8(5-i#)*/? (P +0)° +E] /24 (P F) |1/

P8 = § T - 5k \ e
L3 r r J (1-b3)@P+3%b° (#+D)® + E
0
(2.2.22)
where & = (2 - oi?)t/s, (2,2.23)
D = ‘rl’n cos 28 + q1* sin®e, (2.2.24)
E = 4(sin®9 cos®¢e) 1;(19 -c?), (2.2.25)
and F=r - ci®sin®s. (2.2.26)
The form used in the program is_
Ci O
R
i l-b 242 b R
R;P_(t) "% b J[-—if F, Fg ax , (2.2.27)
where X=2C0
Fp = x(c 3 - :?)1/3/[(1-1:,’):8 + b? ¢, ?3*] (2.2.28)

-f‘ - c;-l {&@’ + D)a + ml/ﬂ + (ma —_ﬂ} 1/2 (202029)
B (% +D)® +E )

The integrand is evaluated in FUNCTION TWO Card TWOOl?, F, is coded
in card TWOOl3, and ?B is coded in Cards TWO0l4 and 015, The terms
corresponding to D, B, and F are denoted by P(11), P(12), and P(13)

and are evaluated in Cards STPB029-31.

2.2,7 Rigid Bottom Main Wave, Case c3 > ¢4 > . The rigid

] bottom main wave response for the case c3 > o4 > @ (fast shear)

is expressed in Britt's equations (4-4,3), (4-3.14), and (4-3,15)
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which are as follows:

P lt) = %r *e (2.2.30)
- 1/
+ 2 4 / (o wzaL 2 (A-B){ la 1/; 12 1/2} e
2R <t [(a-B)2+c? ] [(w=k )2+L] /7 [(w+K ) °+L]

b ._A(cP=u?)1/3 1 1 dw
f Z—T‘Rza f [ A’+(B+C).'] { [(,&_lsn)a_’_l‘]l./a- [(w+lgn)’+L]1/3}

Oa
where 0 = (lee™ = o)1) /3 nd
o - N2 { Lauﬂ!/’-a}l/’ r (2.2.31)
R.o a® + €
( o2 o ) e bga , (c:’ k’)a
with r ={ [ —— - gag‘]-——-}{]_‘.[.—_‘
N | p) . 4c: A ;
ce® 2 3 gs s
= k°g3g4] - q1k [4(';- = k%) + 2gsgetk ('53- + 'g-‘-)]
bk
+4%a}

Here, cg, is the propagation velocity of the Stonley wave,

X = 1/c g = (ka - c;’z)l/a' gs = (kz - c;a)I/a' s = (ka - '3)1/2'

st’

Txan - (k® - c1%cos?0), and f = 4‘rf“g1°cos°9.

]
]

The Stonley wave propagation velocity Cgt is calculated in

SUBROUTINE STONL., The equation for c_, used in the program is

st
described in Section 2.4,
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The above equation is coded in the form

R, 2bR, a9
RyP(t) = 2= + R4 + / FF, v . (2.2.32)
T ﬂRr 5

F, and F, have been defined in Equations (2.2.21), (2.2.15), and
(2.2.16) .

The first two terms of Equation (2,2,32) are calculated in
Carde STPB056-71 for all solid bottom main waves, and the result
is stored in the variable TERMl. The integrand is determined in
FUNCTION ONE in Cards ONEO47 and 051 in the same way as for the
precursor. However, the function Fx and the factor in front of the
integral are here calculated in Cards ONE0O32 and STPB032 as they
were for a fast fluid bottom main wave,

2,2,8 Rigid Bottom Main Wave, Case cg > ¢c; > c4. The main

vave response for the rigid bottom case ¢c3 > 1 > ¢4 (slow shear)

is given by the following equation (Britt (4-3,13))

[+
1/
+ 2 Q/Ai:a- uﬁl 3?-{ : Hi l/zb hlﬂ '1"3} dw
2TR_cs A A+ (B+C)® [lw-K )?4L]  [(wix )?+L]"

2R oot (R+C)2 +B° {(F+D)® + E

2 /o3 /i /
zb /(ﬂ’_t.g"‘)‘ ”B{ [(@®+D)2 +E]1 /0 4+ (m"-g_}l .
0

(2.2,33)

where A=w[c?/2 - -3 1, (2.2,34)
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Buo (i +)(® + P2 (0 - 7)/3, (2.2.35)
Cm =2 (o* +3%)1 /0, (2.2.36)
4c,*
The above equation is coded in the form
o Cy Og
R 2bR (%] R
i . 2
R:I.Pr(t" - if + RiA + _T_m“i/-Fka dw *‘(ar ‘Q-/FAFB dX} (2.2.37)

o 0

where x = 4 o, Fy and Fk are defined in Equations (2,2,21), (2.2,15),
and (2.2.16),

EA = (mj—f-oi)l/'ﬂg— = (*i M co"a)l/aﬁx ’ (2.2,38)
a‘[(A7)® + B%] (R, + E)° + B
Fy = ot {Kg’ +D)® +EI*/2 + (v -EL}IA ' (2.2.39)

(® +D)® +E

cos a m 0 = [1 = (¢ /0)% l/t,

A=A =xl (a/cg)®/2-1-2]7,
Ex n °B = x(1 + x’){[cosﬁam’] [(c;/c.)'-l-x’]}’/'.

Ex = %C = b(cy /6, )* (cos®ox + x')*/'/4 R

The firet three terms of Equation (2.2,37) are calculated using the
srme cards as for tihe fast shear case. The integrand of the second
integral iz computed in FUNCTION ONFl. ¥, and ?B are expressed in Cards
ONE1019, 20, and 21, A, B,, and C_ are calculated in Cards ONE1015-17.
The terms corresponding tc¢ D, B, and F are denoted by P(1ll), P(12), and

P(13) and are evaluated in Cards STPB029-31. The value of the integrand
is stored in the variable ONEl in Card ONE1023. The response
STPW = Rxpr(t) is then determined in Cards 8TPB079 and 80.
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2.3 The Complex Arithmetic Method for Calculating the Step Wave

Response

A second option for calculating the step wave response is
provided by the complex arithmetic method, This procedure is based

on the equation (Britt (5-2.12))

2 y2
u # 074
Pr(t) = = / Re{;l—y K-:\l)} dy
1
R, wp = d_t/R
2 . r Ry

whére u = x + iy and for t < t, = Rr/c1
Xx=0
Y = C;l (2.3.2)

-3 /
ys = R [tr - d_(ci®RS - ¢2) }/2],

For times t > tc these variables are

-2 3 _ a —3p3y) 1 /2
X = R, dr(t o] Rr)

yvi =0 (2,3.3)
.
Y = Rr tr.
The reflection coefficient K for a solid bottom is defined
o [ (2u® +cg?)? - 4u°cv-‘,cy.] - boscet

K= - b (20304)
o [ (2u® +c®)® - 4:13020'4] + brycgt

where o, = (7 + w)/2 for i =1, 2, 4.
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For a fluid bottom ¢4 = 0, and the equation for K reduces to
K= (m = br)/(ca + bag). (2.3.5)
K, is the value of K at u = X + iyz. The other variables used above

are as follows:

Y =[ur?® + (t - ao1)?] 1/2 (2.3.6)
wz=-[ci'2 + (>t+iyx)"’]’/2 (2.3.7)
wp = [c;'? + (x + iya)zj 1/3 (203-8)

f(w) = [Rf__wi - 2d_to+ (ta-cfzfﬂ 1/2 +wR_ - d t/R - (2.3.9)

The form of Equation (2.3.1) which is coded is

C Vo "Rr
R,P (t) ={Az + / Re[F.(K-K,)] dz}/(ﬁ-i-) (2.3.10)
1 Y1
where z = Y,
Ay = Imr'< lo [c o =Cy T cose] /[(c 2w % =2c; T_cosf(cy wy)
2 = |_.1 g 4L Cr W2 1 T 1 W 1T "\Cy iy
2. 2_ o:.9a073 (2.3.11)
+ (a1 Tm -~ 8in 9)) +cqwm - 'rmcos e]}],
and
cGi1u uRr
B e =] === 2,3.12
F aon (o Y/Rr) C1 Y ( )

As in the Cagniard-Rosenbaum method, the response STPW = Ripr(t)
is calculated in SUBROUTINE STPWA for the precursor (t < tc) and
in SUBROUTINE STPWB for the main wave (t > tc) using the Gaussian
quadrature of FGI to evaluate the integral. The last factor in
Equation (2,3,10) is calculated in Cards STPA039 and STPB097. The
integrand and A; are coded in FUNCTION SEVEN, Cards SEVNO35 and 045,

The value of A; (t) is obtained from STPWA by a call to SEVEN with
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Z = Cys. The function Ky = K(x+iy;) is evaluated using the same
equations as for K(u) in the integral, namely, RCOE in Cards SEVN022
and 029. In FUNCTION SEVEN the variables brought over by COMMON
statements are calculated in the main program, and members of the P
array are determined in Cards STPA035-38 for the precursor and in
Cards STPB093-96 for the main wave,

2.4 The Stonley Wave Propagation Velocity

The Stonley wave propagation velocity Cq _is defined as the

t
zeroes u = % i/cst = *jX of the denominator of the solid bottom

reflection coefficient expressed in Equation (2.3.4). Thus

u? = =c_2 is the solution of the equation

st
01[(2113 + c‘-a)a I 4“30’30'4:, + bﬂac: = 0' (2.4.1)
where o = (a® + ua)’/b,
Qg = (C;z + ua)l/a:
and v = (e + u’)i/%.

To obtain the form of Equation (2.4.1) which is used in the program,
first note that the square roots o, o», and ¢, are imaginary since
Cat is known to be smaller than ¢, c3, and cs. Next replace u®
by -c_ . multiply through by icycacecy,, and set y; = c2 to obtain
1/2
(1%~ y3 ) {Cz(Yh - 2¢4%)? = 4c,® [(cp? = va) (ce® - ve) J 1/5}

. (2.4.2)
+ beyya?(c3® = ya)t/% = 0.

28




NOLTR 71-110

This equation is solved for y; in SUBROUTINE STOWL by iteration
using the secant method, The variable y, is denoted by the FORTRAN
symbol ¥2. Then Cg» called CSTON ian the code, is the square root cf

Ya»

2.5 Theory of the Plane Wave Botiom Raflection

In cases where the plane wave bottoum reflection is adequate
for one's needs or when one wishes to compare these results with
the sphericai wave reflection, the plane wave option of the BOTREF

program can be used, The reflection geometry, inciden’ and critical

angles, and the incident pulses are the same as for the spherical
i wiave in Section 2,1: and, unless otherwise noted, the notation is

the same.,

2.5.1 The Plane Wave Reflection Coefficient and Phase Shift.

The plane wave reflection coefficient K and phase shift ¢ for a
non-rigicd bottom are calculated from the following equations. For

subcritical angles of incidence K and ? are

| K= (ay = 1)/(ay + 1) (2.5.1)

3 and ¢ =0

ﬁ where AT = COS 9/[b(51“2°cr - sin2°)‘/2 [ (2.5.2)
At the critical angle "oy these expressions reduce to K =1

and ¢ = 0, At supercritical incidence we have

Ky =1

/ (2.5.3)
and # = 2 arctan[ b(sin®1 = sin"ﬁcr)1 2 /cos ﬂ.
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The above equations are coded in the main program Cards BOTR260-274,
307. The FORTRAN variables CR and E2 denote K and ¢, If K is
complex, then CR = |K| .

For a rigid bottom K and 2 are determined from the equations

below, At subcritical incidence, 8 < 9 < @ . we have

cr crs

K= (AT + BT - 1)/(AT + BT + 1)

c = 0 (.2.5.4)
where

Ap = cos @ (1 - 28i.n3°/sin°°crs]’/[b(sin°°cr-sin°e)‘/"’]
and (2.5.5)

Bp = 4cos esin°9(sin°ecrs -~ gin%0)/

B3 sin‘acrs(sin’ecrs - sin?e)‘/2 1. (2.5.6)

At the critical angle 6 = 0y the equations simplify to K = 1 and

= i i i < e <
¢ 0., For an incident angle in the range ecr ecrs the

reflection coefficient is complex., Its modulus is

/
|K | ={[ A:.A + (B, - 1)3]./ [A;.A + (B + 1)2]}1 . (2.5.7)
and the phase shift is
P = arctan[(l-BT)/ATA] + arctan [(1+BT)/ATA], (2.5.8)

where

App = cos8 e['1-291n29/sin°9cr;]3/'[b(sin’“-sin’ﬂcr)‘/%k2,§,9)

At the critical angle of the shear wave ﬂcrs the eguations reduce to

K| =1
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and ¢ = 2 arctan(l/%TA). (2.5.10)
For angles of incidence ¢ > Oorg W have
K| = 1
| and ¢ = 2 arctai 1/ (A, + Br,)] (2.5.11)
i where Bpp =4 cos® sin®2(sin®n z O gin®e)/

cx

I {b sinte (sin®2 - 8in®9 )1/3] (2.5.12)
crs crs

These equations for the solid bottom reflection coefficient and
phase shift are coded in Cards BOTR280-3C7. As for the fluid bottom,
K and ¢ are denoted by CR and E2; and if K is complex, CR= {Kl\.

2,5.2 The Plane Wave Bottom Reflection Pressure History.

The plane wave bottom reflection pressure history pr(t) is calculated

. from the following equations:

when 8 = ecr'
E p, = 0 for t < tc = Rr/c1
} (2.5.13)
! p, = p?(Rr) K exp[}(t-tc)/br] for t 2 t,

when 6 > 9§
c

?

r

1K\ , .
P, = Pp(R) ‘Fexp(-(t-t ) /5 1B [ (t ~t) /6 Jsin 0 for 6 st < ¢_
(2.5.14)
p, = t » with the sign of ¢ for t =t

P, = pp(R.) IK|exp[-(t-tc)/GJ{cos ¢
- § Bi (-t ) /6, | sin o}

Note that the plane wave theory has been modified to use PF(Rr)

for t > td-(2.5.15)

and Gr = G(Rr) which account for non-linear changes of the shock
wave peak pressure and time constant with distance, Also the arrival
times of the main wave and precursor have been changed to conform

to the spherical wave situation. In the strict plane wave theory
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the precursor begins at t = - ©, and the incident wave and the
reflected peak arrive simultaneously.
The functions E; (x) and Ei(x) are the exponential integrals

defined for x > 0 as

E (x) = / e—"%—fl’-dy (2.5.16)
X

Ei(x) = - /e—’-‘%:ﬂdy = -E; (-x)
-X

X
= /‘*—"gﬂdy. (2.5.17)

The function E; (x) is evaluated using the following approximate

formula (see for example Abramowitz and Stegun (5))

0sx<1
E; (X) ~ @ + a1X + a2x + a3 + a,x* + as® - log(x)
(2,5.18)
ap = =,5772156¢% as = ,05%519968
a = ,99999193 ag = -,00976004 §
az = =,24991055 as = L,00107857 %
x 21 |
|
o+ a8 + @y + azx + a, i
x exp(x) By (%) w~ {2.5.19) ,
¥ o+ b1X3 + b;xa + bax + b
ay = 8,5733287 b = 9,5733223
a2, = 18,059017 by = 25,632956
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aa 8.6347609 by = 21,099€531

ag = 26777373 by

3.9584969

The function Ei(x) is evaluated for x € .5 using the forrula (Reference

(5))
7

n
Ei(x) m Y + log (x) + Z; X (2.5.29)
n= S

where Y = ,57721566.,. is Euler's constant. For x > .5 Ei(x) is

obtained from

X
exp(-x)Eilx) = exp(-x)Bi(1) + [ SXRO=H) gy, (2.5.21)
l

where E i(l) = 1.8951178. The integral is then evaluated using
the Gaussian quadrature of FUNCTION FGI,

The reflected pressure Py = PBOT is calculated in the main
program in Cards BOTR861-879., The exponential integrals E; and Ei
are calculated in the subprograms EXEl and EXEI, and the integrand

of Eguation (2,5.21) is coded in FUNCTION EXPO.
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3. THE BOTTOM REFLECTION COMPUTER CODE

The Bottom Reflection Code has been programmed in FORTRAN IV
for use on the CDC 6400 computer at NOL. The code is made up of
a main program called BOTREF and the following bottom reflection
related subprograms: STONL, STPWA, STPWB, ONE, ONEl, TWO, SEVEN,
EXEl, EXEI, EXPO, FGI, PLOT1l, and SCAL. In addition, the NOL
general purpose plotting program CALCM1l must be included for the
generation of a tape to be plotted on CALCOMP incremental plotters.
For NOL users CALCMl is available on the subroutine library tape.
The control cards which are included in the program listing of
Appendix A contain the statements necessary for using CALCM1l from
the library tape. For programmers outside of NOL information on
the plotting programs may be obtained from the NOL Mathematics
Department (Code 330).

The basic organization of the bottom reflection code is as
follows. The main program BOTREF handles all of the input and output
and calculates the shock wave peak pressure and time constant and
other time independent magnitudes, It performs the time incrementa=-
tion of the pressure-time histories and calculates the convolution
integral, impulse, and energy flux for the spherical wave bottom
reflection.

The spherical wave step wave response Pr(t) is obtained by
calls from BOTREF to STPWA for the precursor and to STPWB for the
main wave. These subroutines in turn set up the integration for
Pr(t) using the Gaussian quadrature in FGI. The various integrands
described in Sections 2,2 and 2,3 are calculated in subprograms

ONE, ONEl, TWO, and SEVEN, The Stonley wave propagation velocity
33
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c for rigid bottoms is computed in SUBEOUTINE STONL on a call

st
from the main program,

The plane wave bottom reflection is also calculated in the main
program, Calls to SUBROUTINES EXEl and EXEI obtain the exponential
integrals E; and Ei which are used to determine the bottom reflection
in Equations (2.5.13), (2.5.14), and (2.5.15).

| SUBROUTINES PLOT1 and SCAL set up the CALCOMP plots of the
pressure-time history. PLOT1 calls SCAL to scale the plot, calls
CALCM]1 for plotting the axes and the pressure-time curves, and then
calls SUBROUTINES SYMBL4 and NUMBR, which are part of the CALCM1
program, to write additional information on the plots.

The Bottom Reflection Program also has an option for calculating
the peak translational velocity (PTV) induced in submerged or floating
targets by the hottom reflected pulse, Either of the spherical or
plane wave reflection theories may be used, The targets are approxi-
mated by an infinitely long cylinder of a specified radius, and the
PTV Program described in Reference (6), is used to calculate the
peak translational velocity. This program uses the additional
subroutines PTV, FV, Fl, XMAX, VITAB, and PTAB. The PTV is calculated
bv calling SUBROUTINE PTV (Cards BOTR813L and 813N,

The cards in the main program which are necessary for PTV
calculations are denoted by card numbers followed by letters A, B,

C, etc. If the bottom reflection program is not to be used for
PTV calculations, these cards and the subroutines of the PTV Program
may be omitted,

In the following paragraphs the most impcrtant FORTRAN symbols
of each subprogram are described, and the locatioris in the program are

given where each symbol is calculated,
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3.1 FORTRAN Svmbols of the Main Program

Program Input

The input data is read in Statements 3 and 4, Cards BOTR041l, 42,
and 89, and in Card BOTR1O0lI using the format 8Fl10.5. These inputs are
explained in comment Cards BOTR011l-39, 72-87, and 101B-101G. The

inputs and their units are as follows:

First Data Card, Statement 3

WCH charge weight W in pounds or KT

CWATER sound velocity ¢; of water in ft/sec

CBOT sound velocity ¢z of the bottom material in ft/sec

CSHEAR a double purpose input expressing the rigidity of the hottom,
If CSHEAR > .5, it is the shear wave propagation velocity
cs of the bottom in ft/sec, If CSHEAR = .5, it is the dimen-
sionless Poisson ratio from which the shear velocity c¢ is
calculated in Card BOTR062. Values of ¢ £ .5 can be neglected.

RHOWAT density p; of water in gm/cn®

RHOBOT density pz of the bottom material in gm/cn®

PRECOE <coefficient cp of the pressure similitude equation in psi.
PRECOE depends on whether W is in pounds or KT.

z5 a control parameter. 25 greater than zero results in a
shorter print out for the spherical wave reflection.

See Appendix B to compare the short and long print out.

Second Data Card, Statement 3

PREEXP exponent n, of the pressure similitude equation

THECOE <coefficient CG of the time constant similitude equatior in

seconds, This variable also depends on the units of W.
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exponent n. of the time constant similitude equation

nunber of points in the pressure-time history for one time
constant G, STEPS = 20, is usually sufficient to obtain

a smooth, detailed pressure history. In many cases,

STEPS = 10. or 5.0 is adequate,

duration of pressure~time history in multiples of the time
constant G. If negative, its absolvte value is the duration
after the arrival of the bottom reflection peak at t = tc.
If positive, it is the duration after the direct wave
arrival, DURAT = -3,0 is generally sufficient for calculating
the significant parts of the bottom reflection,

CALCOMP plot scaling parameter for the Y-axis in psi per
inch of graph, The X-axis is always drawn three inches
above the bottom of the graph. The length of the Y-axis

is nine inches, Thus the maximum pressure plotted is

€6 * X1, and the minimum is -3 * X1, Pressures outside of
this range are plotted at the maximum or minimum, whichever
is applicable,

scaling parameter for the X-axis in microseconds per inch

of graph, If X2 = 0,, SUBROUTINE SCAL calculates an

approoriate value of X2,

SLOPE slope of the bottom from charge to gauge in degrees, If
the slope is not zero, the internal computing geometry is
changed in Cards BOTR170-183, SLOPE must be zero if the
geometry changing options of 22 and THOVAL are used,

Third Data Card, Statement 4

BIGH water depth H at the charge in feet., BIGH is also used as
a control parameter., After completion of each bdtom
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reflection pressure-higtory, the program control returns

to Statement 4 to read a new set of data., If BIGH = 0.,

the pregram stops., If positive, computation continues with

the new geometry. If negative, program control transfers

to Statement 3 where a new set of charge, physical constants,

etc,,are read.

depth d of the charge below the water surfa feet

depth dg of the gauge in feet “'*

horizontal range r between charge and gauge i et

desired ratio between the bottom reflection incident angle

8 and the critical angle Bope The variables D and DGAU

are changed in Cards B0TR137-142 to obtain this ratio,

SMALLR is not changed, If THOVAL s 0 the geometry is not

changed. See Appendix C for a discussion of this option.

parameter which selects the theory. Wwhen Z1 = 0, the

spherical wave Cagniard-Rosenbaum method is used, When

Zzl = 1,0, the Arons-Yennie plane wave theory is used., And

for Z1 = 3.0, the complex arithmetic method is used to

calculate the spherical wave bottom reflection, Cards

BOTR389-4/3 make the theory selection and write out the

appropriate headings,

arrival time difference between the bottom reflection peak

(at t = tc) and the direct wave in microseconds, If Z2 < 0.,

the guometry is not changed., When the geometry is changed,

D and DGAU are varied to obtain the desired arrival time

difference, SMALLR is not changed, and the change in D

is the negative of the change in DGAU so that the incident
38
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angle 0 is also unchanged. Tkis geometry change is performed
in Cards BOTR121-127, See Appendix C for a discussion of this

option.
plot control parameter. A CALCOMP plot tape is generated

if 23 = O,

Fourth Data Card (EOTR10lI), For PTV Calculation

RADIUS

cylinder radius in feet., This is the draft or cross-
sectional radius of the target vessel. If RADIUS =< 0.,

the PTV is not calculated.

controls printing in SUBROUTINE PTV. If APRINT < 0.,

the translational velocities calculated in the iteration

for the PTV are printed, An example of this printout is
given in Table B.l following the pressure-time history.

If APRINT 2 0,, the variables TIMEl, PTV1l, and PTV2 described

below are printed from the main program (Card BOTR813N).

Program Output
Appendix B contains examples of the full print out and the

} shorter print out for the spherical wave reflection and a print out

for a plane wave reflection. Most of the variables in the output

are self-explanatory; others which are not so well defined are

described below.

SMALLH
| DEZFRO
D2
COSAL
COSTH

SINTH

height h = H - d of the charge above the bottom
height d - dg between the charge and gauge depths
reduced height dr/Ri from image charge to gauge
0o

cos ©

s8in ©
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TIME
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FIMP

EFLUX

VMID
PRE
REEID
RFIMP
REFLUX

POSIMP
RPOSIM
TIMEl
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increment At of the reduced time t
exp(-4t/G,)
reduced time t
RiPr(t)
RiFI(t)/'Gr
incident pressure Py in psi
time in seconds relative to the direct wave arrival time
bottom reflected pressure P, in psi

surface reflected pressure P, in psi

total pressure p = p; +p.# Py in psi., Negative pressures
are cut off so that P + hydrostatic =z 0.

total impulse I in psi-sec calculated from the equation
t

I-= / p dt, where t  is the minimum of § and 'Ri./cl

%

energy flux E_ in in-psi defined by the equation

F
t

Ep = (/ Ip] p dt )/(2.3066p3¢;)
%%
value of STPW at t - At, RiPr(t - At)
value of STPW a2t t = 2At
RiA
; /3
reduced impulse I/W!
reduced energy flux EF/'W"/3

impulse of the positive part of the total pressure pulse p(t)
reduced positive impulse, POSIMP/W’/a

time in seconds of the PTV, where time is taken to be zero
at the beginning of the bottom reflection

the PTV in ft/sec induced by the bottom reflection in a
submerged target
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target at the surface

Time Independent FORTRAN Symbols

Symbol
B
POISR
CSHEAR
CSTON
SMALLH
RACTU

PH

RS
W13R

REDR
THETA

PACT
TACT
THET

D2ACTU
R2ACTU
CTWO

R2

THETAR

THETR

Definition

b = py/pa

Poisson ratio G = (.5¢3-c2)/(c2-c2)
shear velocity c, calculated from T
Stonley wave velocity Cat
h for zero slope

R,
1

negative of the hydrostatic pressure
at depth dg

reduced surface reflection arrival tine
“p/3/Ri

‘Ei/“p/ﬁ

G

Pp(R;)

characteristic time Ri/c1

G in milliseconds

bottom slope in radians

d

b o

Ry

sin Bcr = C1/Cg

reduced bottom reflection slant rance
Rr/Ri

Gr = G(Rr)

G, in milliseco:.is

41

the PTV in ft/sec induced by the bottom reflection in a

Card Number

BOTRO50
59

62

69

147

151

154
158

162
163

l64
165
166
167
172
187
188
213

215
216




Symbol

PACTC
Rl
THETSR
SINTH
COSTH
D2R2

SINAL
COSAL
SINBE
THE

ANGA

THONE

ALPHA
BETHA
SHD2R2

c2
CBOT2
CSHR2
SINTH2
CBSH

NOLTR 71-110

Definition
n. -1
(R /Ry) ©
N
(Rs/Ri)
Gg
s8in ©
cos 6

c;é/hi for supercritical reflection
c;b/ni for subcritical reflection
81in ecr
cos ecr = Q0
sin ©

cr
incident angle ¢ in degrees
plane wave reflection coefficient K
phase ghift ¢ in radians

phase shift ¢ in degrees

angle of shear wave in bottom in degrees

angle of comprassion wave in bottom in

degreecs
ecr in degrees
ecrs in degrees
reduced arrival time of critically
refracted shear wave
c?
c3®
Ce?
sin®¢
~4ce® /oy
42

Card Number

BOTR217
218
219
221
222
226
228
235
238
243
245
261-304
260-307
308
312,315

319,321
352

363-365
446
447
448
449
450




Symbol
C2SHR2

C4CB
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Definition

2C4a

C1‘b/C2

Spherical Wave Pressure-Time Calculations

S ol

Tl
T2
T3
T4

T2
T3
T4

TS5

Definition
increment st of reduced time
increment At' ~ At/8
original value of At
25t/3
exp(-4t/G )
control parameter for pressure history
R;P_(t - At)

R,P_(€)
R, (t - 24t)
convolution integral Fy

number of subintervals to be used in
the Gaussian quadrature integration
for Pr(t)

vit)/e for t ~ t, - 24aY where at’

is approximately At/8

(V)

t(.75 V)

(.5 V)

t(.25 V)

u(tc+2At')/tc for rt ~ 4t/8
£(.25 U)

t(.5 U)

t(.75 U)

t(v)
43
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BOTR451
452
463-816
Card Number
BOTR476, 500,652
566,609
478
479,501
431,503
721,804
542-662
520-690
557-691
556=673

196,552-693

573
578
579
580
581
616
623
624
625
626
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Symbol Definition Card Number
PD incident pressure pi(t) BOTR702

PS sur face reflected pressure ps(t) 704
PBOT bottom reflected pressure Pi(t) 707

P total pressure p = p; + P, + Pge Negative

values of p are cut off at p + hydrostatic 2 0. 713

Impulse and Enerqy Flux Calculations 717=-767
Symbol Definition Card Number
Xp maxirum of pressure p and zero BCTR720
PMID pressure p of even numbered time t-it 724
XPMID maximum of PMID and zero 725
PPRE pressure p at odd numbered time t-2At 763
XPPRE maximum of PPRE and zero 764
PEND pressure p(t) at odd numbered time 757
XPEND maximum of PEND and zero 758

Variables Used in the PTV Calculation and in Plotting

Symbol Definition Card Number
XX storage array for time in microseconds
ﬁ for CALCOMP plot., Here time is zero

at the arrival of the direct wave, BOTR800, 889
YY storage array for the total pressure

p for plot 801,890
IPMAX number of plot points stored in XX and

YY arrays 807
QX the array in which the time in seconds is

stored for PTV calculations, This time is
802E,813H,
zero at the beginning of bottom reflection. and 891E
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Definition Card Number

the array in which the bottom reflection
pressure pr(t) is stored for PTV calcula=-
tions, If pr(t) is negative, the value
stored in QY is calculated so that

BOTR802F, 8131
pr(t) + hydrostatic 2 0 and 891F
arrival time of the peak or sinqularity
of the bottom reflection, Time in this
case is measured from the beginning
of the bottom reflection. 813C
signals the approach of the bottom
reflection singularity. The value
TIMER2 - 24t is used, The symbol T3
is used for this variable in SUBROUTINE
PTV, 813D
The earliest time at which the trans-
lational velocity is to be calculated.,
The symbol T4 is used instead of XT4 in
SUBROUTINE PTV, 813E
the largest value of time at which the
translational velocity is to be
calculated, The svmbol T5 is used instead
of XT5 in SUBROUTINE PTV, 813F
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